These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temporal response profiles of serum ubiquitin C-terminal hydrolase-L1 and the 145-kDa alpha II-spectrin breakdown product after severe traumatic brain injury in children. Author: Metzger RR, Sheng X, Niedzwecki CM, Bennett KS, Morita DC, Zielinski B, Schober ME. Journal: J Neurosurg Pediatr; 2018 Oct; 22(4):369-374. PubMed ID: 29957142. Abstract: OBJECTIVE: Traumatic brain injury (TBI) is the leading cause of acquired disability among children. Brain injury biomarkers may serve as useful diagnostic and prognostic indicators for TBI. Levels of ubiquitin C-terminal hydrolase-L1 (UCH-L1) and the 145-kDa alpha II-spectrin breakdown product (SBDP-145) correlate with outcome in adults after severe TBI. The authors conducted a pilot study of these biomarkers in children after severe TBI to inform future research exploring their utility in this population. METHODS: The levels of UCH-L1 and SBDP-145 were measured in serum, and UCH-L1 in CSF from pediatric patients after severe TBI over 5 days after injury. Both biomarkers were also measured in age-matched control serum and CSF. RESULTS: Adequate numbers of samples were obtained in serum, but not CSF, to assess biomarker temporal response profiles. Using patients with samples from all time points, UCH-L1 levels increased rapidly and transiently, peaking at 12 hours after injury. SBDP-145 levels showed a more gradual and sustained response, peaking at 48 hours. The median serum UCH-L1 concentration was greater in patients with TBI than in controls (median [IQR] = 361 [187, 1330] vs 147 [50, 241] pg/ml, respectively; p < 0.001). Receiver operating characteristic (ROC) analysis revealed an AUC of 0.77. Similarly, serum SBDP-145 was greater in children with TBI than in controls (median [IQR] = 172 [124, 257] vs 69 [40, 99] pg/ml, respectively; p < 0.001), with an ROC AUC of 0.85. When only time points of peak levels were used for ROC analysis, the discriminability of each serum biomarker increased (AUC for UCH-L1 at 12 hours = 1.0 and for SBDP-145 at 48 hours = 0.91). Serum and CSF UCH-L1 levels correlated well in patients with TBI (r = 0.70, p < 0.001). CONCLUSIONS: Findings from this exploratory study reveal robust increases of UCH-L1 and SBDP-145 in serum and UCH-L1 in CSF obtained from children after severe TBI. In addition, important temporal profile differences were found between these biomarkers that can help guide optimal time point selection for future investigations of their potential to characterize injury or predict outcomes after pediatric TBI.[Abstract] [Full Text] [Related] [New Search]