These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anti-osteoclastic effect of caffeic acid phenethyl ester in murine macrophages depends upon the suppression of superoxide anion production through the prevention of an active-Nox1 complex formation. Author: Kwon YB, Wang FF, Jang HD. Journal: J Nutr Biochem; 2018 Aug; 58():158-168. PubMed ID: 29957360. Abstract: This study investigated the anti-osteoclastic effect of caffeic acid phenethyl ester (CAPE) through suppression of Nox1-mediated superoxide anions production. The multi-nucleated cells were counted and followed by measuring their tartrate-resistant acid phosphatase (TRAP) activity. The superoxide anion production was determined by using fluorescent probe dihydroethidium (DHE). After one day of exposure to the receptor activator of nuclear factor-κB ligand (RANKL), the expression of the proteins involved in superoxide anion production was determined by western blotting. A potent anti-osteoclastic effect of CAPE was observed; the superoxide anion level reached a maximum value after one day of incubation. CAPE attenuated the expression of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) and Rac1, and mitigated the RANKL-induced translocation of p47phox to the cell membrane. In addition, CAPE suppressed the expression of nuclear factor-kappa B (NF-κB p65), its translocation to the nucleus, and the activation of NF-κB inhibitor (IκBα) and its kinase (IKKβ). Furthermore, CAPE diminished the expression and activation of the c-jun N-terminal kinase (JNK) and the expression of protein-1 activators (AP-1) such as c-Fos and c-Jun. The expression of Nox1 was suppressed by CAPE through the down-regulation of IKKβ/IκBα/NF-κB and JNK/AP-1 signal pathway. This study provides evidence that the anti-osteoclastic effect of CAPE depends upon the attenuated superoxide anion production, which is closely related with interruption of an active Nox1 complex formation due to the attenuated catalytic subunit Nox1 expression resulting from suppression of the IKKβ/IκBα/NF-κB and JNK/AP-1 signaling pathway and the down-regulation of the p47phox subunit translocation to the cell membrane.[Abstract] [Full Text] [Related] [New Search]