These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of seawater neutralized bauxite residues and changes in chemical, physical and microbial properties induced by additions of gypsum and organic matter. Author: Li Y, Haynes RJ, Chandrawana I, Zhou YF. Journal: J Environ Manage; 2018 Oct 01; 223():489-494. PubMed ID: 29957422. Abstract: Seawater neutralization is a technique that can be used to treat bauxite residue prior to its storage but, as yet, no attempts have been made to revegetate it. Seawater neutralized bauxite residue was found to have a pH1:5 of 9.3 and to be highly saline (EC1.5 16.5 dS m-1). After leaching pH1:5 rose to 9.7 and the residue was still highly sodic (ESP = 64-69%). Addition of 1% gypsum, prior to leaching, arrested this increase in pH while with 5% gypsum addition the pH1:5 was lowered to 8.9. Addition of 5% gypsum also reduced ESP to 38% and increased watercress germination in the residue from 58% in control treatments to 88%. The major ions in leachates were Na+ and Cl- and gypsum application increased the quantities of Na+, Ca2+ and SO42- leached. Addition of 6% biosolids or 6% poultry manure added exchangeable cations to the mud and lowered ESP by 5-11%.The EC was 2.8-3.7 (mean 3.1) times higher and pH 0.2-0.7 (mean 0.43) units lower in saturation paste compared with 1:5 soil:water extracts. Addition of amendments had only small effects on physical properties. While organic C content was increased more by biosolids than poultry manure addition the reverse was the case for soluble organic C, microbial biomass C and basal respiration. It was concluded that although seawater neutralization initially lowers the pH of bauxite residues it is unlikely to increase the ease with which they can be revegetated.[Abstract] [Full Text] [Related] [New Search]