These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural Evolution and Microwave Dielectric Properties of xZn0.5Ti0.5NbO4-(1- x)Zn0.15Nb0.3Ti0.55O2 Ceramics.
    Author: Yang H, Zhang S, Yang H, Zhang X, Li E.
    Journal: Inorg Chem; 2018 Jul 16; 57(14):8264-8275. PubMed ID: 29957929.
    Abstract:
    Structure and microwave properties of xZn0.5Ti0.5NbO4-(1 - x)Zn0.15Nb0.3Ti0.55O2 ceramics in the range of x = 0.0-1.0 were investigated. Rietveld refinement analysis and Raman spectra show that rutile- and orthorhombic-type solid solutions formed at 0-0.2 and 0.65-1, a composite at 0.2-0.64. In the solid solution regions, chemical bonds are enlarged. In this case, the Zn/Ti/Nb-O1 bond covalency and bond susceptibility are reduced, and lattice energy and thermal expansion coefficient increase along with x increases, which is mainly responsible for the development of microwave dielectric properties. Furthermore, far-infrared spectra and a classical oscillator model were used to discuss the intrinsic dielectric properties in detail. Temperature stable ceramic was obtained for x = 0.516: εr ∼ 46.11, Q × f ∼ 27 031 GHz, and τf ∼ -1.51 ppm/°C, which is promising for microwave applications.
    [Abstract] [Full Text] [Related] [New Search]