These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beta-adrenergic receptor subtypes and subcellular compartmentation of cyclic AMP and cyclic AMP-dependent protein kinase in rabbit cardiomyocytes. Author: Buxton IL, Brunton LL. Journal: Biochem Int; 1985 Aug; 11(2):137-44. PubMed ID: 2996547. Abstract: In purified ventricular myocytes from adult rabbit, beta-adrenergic stimulation causes cyclic AMP accumulation and cyclic AMP-protein kinase activation in both particulate and soluble fractions of the cell, whereas prostaglandin E1 elevates cyclic AMP and cyclic AMP-protein kinase activity in the soluble fraction exclusively. Only activation of particulate cyclic AMP-protein kinase activity results in phosphorylase b----a conversion. Using radioligand binding technics, we have determined whether beta 1- and beta 2-receptor subtypes mediate beta-adrenergic effects in particulate and soluble subcellular compartments, respectively. The non-selective antagonist [125I]iodocyanopindolol binds to intact ventricular myocytes with KD of 25 pM and a Bmax of 2.6 X 10(5) receptors/myocyte. Competition for [125I]iodocyanopindolol binding to intact myocytes by the beta-receptor subtype-specific antagonists practolol (beta 1) and zinterol (beta 2) results in monophasic curves with antagonist KD values of 1 microM and 1.5 microM, respectively. We conclude that adult rabbit cardiac myocytes do not possess detectable beta 2 receptors. Further, the ability of isoproterenol to cause elevation of cyclic AMP in two functionally distinct regions within the myocyte must pertain to the actions of a single subtype of beta-receptor, the beta 1-receptor.[Abstract] [Full Text] [Related] [New Search]