These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Environmental Significance of the Stable Isotopes in Precipitation at Different Altitudes in the Tuolai River Basin]. Author: Li YG, Li ZX, Feng Q, Xiao LG, Lü YM, Gui J, Yuan RF, Zhang BJ. Journal: Huan Jing Ke Xue; 2018 Jun 08; 39(6):2661-2672. PubMed ID: 29965621. Abstract: Precipitation samples and meteorological data were collected simultaneously during individual precipitation events at Tuole station (3367 m a.s.l.) and Jiayuguan station (1658 m a.s.l.) in the Tuolai River Basin. A study of temporal variation, Local Meteoric Water Lines, and altitude change on precipitation stable isotopes was conducted. The relationships between precipitation stable isotopes and temperature, precipitation, average vapor pressure, and relative humidity were determined in order to explore the environmental significance of the stable isotopes at different altitudes in the middle reaches of the Qilian Mountains. The analysis indicated that the stable isotopes of the precipitation in Tuole and Jiayuguan station were characterized by pronounced seasonal variation, with Tuole having higher δ18O values in summer and autumn and lower δ18O values in spring and winter, while Jiayuguan displays higher δ18O values in spring and lower in other seasons. The d-excess was correlated negatively with δ18O, and the correlation coefficients between δ18O and d-excess decreased with increasing altitude due to weakening sub-cloud evaporation. The slope and intercept of the Local Meteoric Water Lines from Jiayuguan to Tuole rose significantly, showing an increasing trend from low altitude to high altitude. For the precipitation events above 10℃, δ18O of Tuole was positively correlated with the temperature, but the Jiayuguan results indicated the opposite. Sub-cloud evaporation weakened with high precipitation events in Jiayuguan. δ18O and d-excess were positively correlated with the average vapor pressure, which declined from Tuole to Jiayuguan. Since the water vapor pressure and saturated water vapor pressure increased, it was difficult to form precipitation with decreasing altitude. The local strong sub-cloud evaporation caused δ18O and δD was positive at low altitude, while the effect of moisture recycling is obvious, such that δ18O and δD are negative in high altitude areas. There is no significant positive correlation between the δ18O and the relative humidity of the precipitation in Jiayuguan, while Tuole displays an opposite pattern. The results of the study will provide a scientific basis for further study of precipitation isotopes in the Tuolai River basin.[Abstract] [Full Text] [Related] [New Search]