These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development and Implementation of a PIN-Diode Controlled, Quadrature-Enhanced, Double-Tuned RF Coil for Sodium MRI. Author: Ha Y, Choi CH, Shah NJ. Journal: IEEE Trans Med Imaging; 2018 Jul; 37(7):1626-1631. PubMed ID: 29969413. Abstract: Sodium (23Na) MRI provides complementary cellular and metabolic information. However, the intrinsic MR sensitivity of 23Na is considerably lower compared with that of the proton, making it difficult to measure MR-detectable sodium signals. It is therefore important to maintain the signal-to-noise ratio (SNR) of the sodium signal as high as possible. Double-tuned coils are often employed in combinationwith a 1H coil, providing structural images and B0 shimming capability. The double-tuned coil design can be achieved with the use of two geometrically decoupled coils whose B1 field directions are perpendicular to each other. This can be used to design quadrature-driven, single-nucleus coils to improve SNR, and additionally, this coil can also be utilized as a linear-driven double-resonant mode. Here, we have developed and evaluateda quadrature-enhanced, double-tuned coil. The novel coil uses PIN-diode switches, inserted only in the loop coil, to shift the resonance frequency between 1H and 23Na so that 23Na signals can be acquired in quadrature and the capability of using 1H function remains. Consequently, the 23Na SNR values obtained with the double-tuned coil are nearly 33% and 17% higher in comparison with geometrically identical single-tuned coils. SNR plots also show the superiority of double-tuned coil in 23Na.[Abstract] [Full Text] [Related] [New Search]