These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes.
    Author: Chong PL, Fortes PA, Jameson DM.
    Journal: J Biol Chem; 1985 Nov 25; 260(27):14484-90. PubMed ID: 2997210.
    Abstract:
    To investigate the mechanisms by which hydrostatic pressure inhibits (Na,K)-ATPase, we measured enzyme activity, as a function of pressure and temperature, of purified (Na,K)-ATPase from dog kidney and eel electroplax, and we monitored protein conformation, possible subunit interactions, and the fluidity of the membrane with fluorescent probes. The (Na,K)-ATPase and p-nitrophenylphosphatase activities were inhibited reversibly by pressures below 1.5 kilobars (eel enzyme) and 2.5 kilobars (dog kidney enzyme). Above these pressures, the enzymes were inactivated irreversibly. The plots of 1n(activity) versus pressure were curvilinear; this indicates that the reversible inhibition by pressure involves two or more rate-limiting steps. The calculated activation volumes varied with temperature and pressure and were larger for the (Na,K)-ATPase activity compared to the p-nitrophenylphosphatase activity. The fluorescence polarization of three hydrophobic probes decreased with increasing temperature (10-36 degrees C) and increased with increasing pressure (10(-3)-1.5 kilobars), reversibly, without any evidence of a lipid phase transition. Plots of enzyme activity versus fluorescence polarization of the lipid probes showed an inverse relationship; this indicates that enzyme activity was directly related to the fluidity of the membrane as measured by the lipid probes. Pressure had no effect on the fluorescence polarization of two cardiac glycoside probes nor on the efficiency of resonance energy transfer between either donor and acceptor cardiac glycosides specifically bound to the ouabain sites of different alpha-subunits, or tryptophan and the bound cardiac glycoside probe. These results suggest that dissociation of dimeric alpha-subunits is not related to the inhibition by pressure, and that the cardiac glycoside-complexed enzyme conformation is stabilized by pressure. It is concluded that increased pressure decreases the membrane fluidity which hinders conformational transitions associated with rate-limiting steps of the (Na,K)-ATPase reaction. It is proposed that ion-bound or -occluded forms of (Na,K)-ATPase are stabilized by pressure because they occupy a smaller volume.
    [Abstract] [Full Text] [Related] [New Search]