These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Complete sequences of the glycoproteins and M RNA of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Author: Ihara T, Smith J, Dalrymple JM, Bishop DH. Journal: Virology; 1985 Jul 15; 144(1):246-59. PubMed ID: 2998043. Abstract: The complete sequence of Punta Toro virus (Phlebovirus, Bunyaviridae) middle size (M), RNA has been determined. The RNA is 4330 nucleotides long (mol wt 1.46 X 10(6), base composition: 26.7% A, 33.6% U, 18.5% G, 21.2% C) and has 3'- and 5'-terminal sequences that, depending on the arrangement, are complementary for some 15 residues. The viral RNA codes in its viral-complementary sequence for a single primary gene product (the viral glycoprotein precursor) that is comprised of 1313 amino acids (146,376 Da) and is abundant in cysteine residues but has few potential asparagine-linked glycosylation sites. The 5'-noncoding region of the Punta Toro M viral-complementary RNA is short (16 nucleotides); the 3'-noncoding sequence is much longer (372 nucleotides). The latter is rich in short stretches of adenylate residues, like the 3'-noncoding regions of the Punta Toro S mRNA species (T. Ihara, H. Akashi, and D. H. L. Bishop, 1984, Virology 136, 293-306). No other large open reading frame has been identified in either the viral, or viral-complementary, M RNA sequences. Limited amino-terminal sequence analyses of the two viral glycoproteins have indicated the gene order and potential cleavage sites in the glycoprotein precursor. The data suggest the existence of a 30 X 10(3)-Da polypeptide (designated NSM) in the glycoprotein precursor that precedes the G1 protein (i.e., gene product order: NSM-G1-G2). Examination of the sequence of the Punta Toro M gene product reveals the presence of multiple hydrophobic sequences including a 19-amino acid, carboxy-proximal, hydrophobic region (G2). This hydrophobic sequence is followed by a 13-amino acid-terminal sequence rich in charged amino acids. The size and constitution of the carboxy-terminal region is consistent with a transmembranal and anchor function for the glycoprotein in the viral envelope. Other regions of the glycoprotein precursor contain sequences of amino acids with a predominantly hydrophobic character (23, 50, and 20 amino acids in length). Their functions are unknown. The amino terminus of the G1 protein is located near the end of the 23-amino acid-long hydrophobic sequence of the presumptive precursor, the hydrophobic 50-amino acid sequence lies within G1, and the amino terminus of G2 is located in the middle of the 20-amino acid-long hydrophobic sequence.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]