These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro antimicrobial activity of cefoperazone-sulbactam combinations against 554 clinical isolates including a review and beta-lactamase studies. Author: Jones RN, Wilson HW, Thornsberry C, Barry AL. Journal: Diagn Microbiol Infect Dis; 1985 Nov; 3(6):489-99. PubMed ID: 2998694. Abstract: Cefoperazone was tested against 554 clinical isolates alone and with sulbactam in three combinations. The addition of sulbactam in low concentrations (less than or equal to 4 micrograms/ml) improved the spectrum of cefoperazone principally against gram-negative bacilli such as Acinetobacter species, some Pseudomonas species, and beta-lactamase-positive Enterobacteriaceae. Nearly all of the spectrum increase was achieved at a sulbactam level of less than or equal to 2 micrograms/ml. Sulbactam was found to be an effective antimicrobial agent against Acinetobacter species (MIC50, 1.0 microgram/ml), Pseudomonas acidovorans (MIC50, 2.0 micrograms/ml), Neisseria gonorrhoeae (MIC50, less than or equal to 0.5 microgram/ml), and N. meningitidis (MIC50, less than or equal to 0.5 microgram/ml). Sulbactam had a higher affinity and binding constant for the plasmid-mediated beta-lactamases such as TEM-1 and TEM-2 compared to cefoperazone (greater than or equal to 10-fold difference). This finding was important as cefoperazone can be hydrolyzed at a moderate rate by the highly efficient TEM enzymes (less than 2% of clinical Escherichia coli isolates). Sulbactam increased the susceptibility (less than or equal to 16 micrograms/ml) of 220 isolates of Enterobacteriaceae to cefoperazone from 88.6 to 96.3% when 4.0 micrograms/ml of sulbactam was added. The cefoperazone antimicrobial activity was also increased against the nonenteric bacilli from a 69.5 to a 87.4% total inhibition. MICs among cefoperazone-susceptible gram-negative and gram-positive strains were routinely decreased 2- to 32-fold, as calculated from MIC90 results. Therefore, sulbactam should predictably increase the antimicrobial spectrum and clinical effectiveness of cefoperazone against nosocomial and other pathogens such as the plasmid-containing enteric bacilli, Bacteroides species and Acinetobacter species, and possibly provide the opportunity to reduce dosage schedules for infecting species already susceptible to cefoperazone alone.[Abstract] [Full Text] [Related] [New Search]