These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Bi-Objective RNN Model to Reconstruct Gene Regulatory Network: A Modified Multi-Objective Simulated Annealing Approach. Author: Biswas S, Acharyya S. Journal: IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2053-2059. PubMed ID: 29990170. Abstract: Gene Regulatory Network (GRN) is a virtual network in a cellular context of an organism, comprising a set of genes and their internal relationships to regulate protein production rate (gene expression level) of each other through coded proteins. Computational Reconstruction of GRN from gene expression data is a widely-applied research area. Recurrent Neural Network (RNN) is a useful modeling scheme for GRN reconstruction. In this research, the RNN formulation of GRN reconstruction having single objective function has been modified to incorporate a new objective function. An existing multi-objective meta-heuristic algorithm, called Archived Multi Objective Simulated Annealing (AMOSA), has been modified and applied to this bi-objective RNN formulation. Executing the resulting algorithm (called AMOSA-GRN) on a gene expression dataset, a collection (termed as Archive) of non-dominated GRNs has been obtained. Ensemble averaging has been applied on the archives, and obtained through a sequence of executions of AMOSA-GRN. Accuracy of GRNs in the averaged archive, with respect to gold standard GRN, varies in the range 0.875 - 1.0 (87.5 - 100 percent).[Abstract] [Full Text] [Related] [New Search]