These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling.
    Author: Xie R, Ge T, Zhang J, Pan X, Ma Y, Yi S, Zheng Y.
    Journal: Plant Physiol Biochem; 2018 Sep; 130():192-204. PubMed ID: 29990772.
    Abstract:
    Citrus fruits possess two abscission zones (AZ), AZ A and AZ C located at the pedicel and calyx, respectively. Early citrus fruitlet abscission (CFA) exclusively occurs at AZ A. Previous data have shown that indole-3-acetic acid (IAA) could inhibit fruitlet abscission. However, its role in CFA remains vague. In this study, we first removed the ovaries of fruitlets in order to exclude their interferences. Then, the calyxes were treated with IAA, gibberellin 3 (GA3) and 6-benzylaminopurine (6-BA), respectively. The results have shown that IAA could prevent CFA from taking place, while either GA3 or 6-BA could not. When IAA concentration decreased to a value between 30 mg/L and 40 mg/L, CFA occurred, showing a concentration-dependent manner. Digital gene expression analysis revealed that 2317 corresponded to IAA treatment, of which 1226 genes were closely related to CFA. The most affected genes included those related to biosynthesis, transport and signaling of phytohormones, primarily ethylene (ET), abscisic acid (ABA) and auxin as well as protein ubiquitination, ROS response, calcium signal transduction, cell wall and transcription factors (TFs). The results obtained in this study suggested that the IAA in AZ A could suppress ethylene biosynthesis and signaling, and then inhibit abscission signaling. To our knowledge, it is the first time to reveal the key role of IAA in CFA, which will contribute to a better understanding for the mechanism underlying CFA.
    [Abstract] [Full Text] [Related] [New Search]