These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of Ni in coupling angiotensin receptors to inhibition of adenylate cyclase in hepatocytes.
    Author: Pobiner BF, Hewlett EL, Garrison JC.
    Journal: J Biol Chem; 1985 Dec 25; 260(30):16200-9. PubMed ID: 2999149.
    Abstract:
    Angiotensin II can inhibit glucagon-stimulated cyclic AMP production in hepatocytes and adenylate cyclase activity in hepatic membranes. Pertussis toxin, an exotoxin produced by Bordetella pertussis, was used to investigate the role of the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase (Ni) in coupling angiotensin receptors to the adenylate cyclase system. An assay was developed using [32P] NAD+ to quantitate the amount of Ni protein in the membrane and the extent of its ADP-ribosylation catalyzed by toxin. The ability of angiotensin to inhibit adenylate cyclase and interact with its receptor was compared with the degree of modification of Ni in membranes prepared from isolated hepatocytes. In control membranes angiotensin II inhibited basal adenylate cyclase by 35%. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin did not inhibit adenylate cyclase. However, the attenuation of angiotensin's effect on cyclase was not linearly correlated with the degree of modification of Ni; ADP-ribosylation of greater than 80% of the Ni was required before a reduction of the angiotensin effect was observed. A possible explanation for this finding is an excess of Ni molecules in the membrane (approximately 3.4 pmol/mg of membrane protein) over angiotensin II receptors (approximately 1.2 pmol/mg of membrane protein). 125I-angiotensin bound to sites in the membrane with two affinities. Computer fitting of the binding isotherms yielded parameters of N1 = 279 fmol/mg protein, Kd1 = 0.2 nM; N2 = 904 fmol/mg protein, Kd2 = 1.4 nM. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin bound to only one site with binding parameters of N = 349 fmol/mg protein, Kd = 0.4 nM. GTP-gamma-S caused a 7-fold increase in the Kd of this site to 2.7 nM. Overall, the data indicate that the Ni protein mediates the effect of angiotensin on adenylate cyclase. The observation that GTP-gamma-S can markedly decrease the affinity of angiotensin receptors when all Ni molecules are ADP-ribosylated suggests that angiotensin receptors may couple to other GTP-binding proteins which may mediate the effects of angiotensin in other signal transduction systems.
    [Abstract] [Full Text] [Related] [New Search]