These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity From At-Home Oximetry Recordings. Author: Gutierrez-Tobal GC, Alvarez D, Crespo A, Del Campo F, Hornero R. Journal: IEEE J Biomed Health Inform; 2019 Mar; 23(2):882-892. PubMed ID: 29993673. Abstract: Complexity, costs, and waiting list issues demand a simplified alternative for sleep apnea-hypopnea syndrome (SAHS) diagnosis. The blood oxygen saturation signal (SpO2) carries useful information about SAHS and can be easily acquired from overnight oximetry. In this study, SpO2 single-channel recordings from 320 subjects were obtained at patients' homes and were used to automatically obtain statistical, spectral, nonlinear, and clinical SAHS-related information. Relevant, nonredundant data from these analyses were subsequently used to train and validate four machine-learning methods with the ability to classify SpO2 signals into one of the four SAHS-severity degrees (no-SAHS, mild, moderate, and severe). All the models trained (linear discriminant analysis, 1-vs-all logistic regression, Bayesian multilayer perceptron, and AdaBoost) outperformed the diagnostic ability of the conventionally used 3% oxygen desaturation index. An AdaBoost model built with linear discriminants as base classifiers reached the highest figures. It achieved 0.479 Cohen's κ in the SAHS severity classification, as well as 92.9%, 87.4%, and 78.7% accuracies in binary classification tasks using increasing severity thresholds (apnea-hypopnea index: 5, 15, and 30 events/hour, respectively). These results suggest that machine-learning can be used along with SpO2 information acquired at a patients' home to help in SAHS diagnosis simplification.[Abstract] [Full Text] [Related] [New Search]