These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces.
    Author: Goda T, Miyahara Y.
    Journal: Langmuir; 2019 Feb 05; 35(5):1126-1133. PubMed ID: 30001621.
    Abstract:
    Conferring antifouling properties can extend the use of conducting polymers in biosensors and bioelectronics under complex biological conditions. On the basis of the antifouling properties of a series of zwitterionic polymers, we synthesized new thiophene-based compounds bearing a phosphorylcholine, carboxybetaine, or sulfobetaine pendant group. The monomers were synthesized by a facile reaction of thiol-functionalized 3,4-ethylenedioxythiophene with zwitterionic methacrylates. Electrochemical copolymerization was performed to deposit zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) films with tunable conducting and antifouling properties on a conducting substrate. Electrochemical impedance spectroscopy showed that the conductivity and capacitance decreased with increasing zwitterionic content in the films. Protein adsorption and cell adhesion studies showed the effects of the type and content of zwitterions on the antifouling characteristics. Optimization of the electrodeposition conditions enabled development of both conducting and antifouling polymer films. These antifouling conjugated functional polymers have promising applications in biological environments.
    [Abstract] [Full Text] [Related] [New Search]