These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Author: Chen J, Liu YQ, Yan XW, Wei GH, Zhang JH, Fang LC. Journal: Ecotoxicol Environ Saf; 2018 Oct 30; 162():312-323. PubMed ID: 30005404. Abstract: Despite numerous reports that legume-rhizobium symbiosis alleviates Cu stress in plants, the possible roles of legume-rhizobium symbiosis and the regulatory mechanisms in counteracting Cu toxicity remain unclear. Here, Sinorhizobium meliloti CCNWSX0020 was used for analyzing the effects of rhizobium inoculation on plant growth in Medicago sativa seedlings under Cu stress. Our results showed that rhizobium inoculation alleviated Cu-induced growth inhibition, and increased nitrogen concentration in M. sativa seedlings. Moreover, the total amount of Cu uptake in inoculated plants was significantly increased compared with non-inoculated plants, and the increase in the roots was much higher than that in the shoots, thus decreasing the transfer coefficient and promoting Cu phytostabilization. Cu stress induced lipid peroxidation and reactive oxygen species production, but rhizobium inoculation reduced these components' accumulation through altering antioxidant enzyme activities and regulating ascorbate-glutathione cycles. Furthermore, legume-rhizobium symbiosis regulated the gene expression involved in antioxidant responses, phytochelatin (PC) biosynthesis, and metallothionein biosynthesis in M. sativa seedlings under Cu stress. Our results demonstrate that rhizobium inoculation enhanced Cu tolerance by affecting Cu uptake, regulating antioxidant enzyme activities and the ascorbate-glutathione cycle, and influencing PC biosynthesis-related gene expression in M. sativa. The results provide an efficient strategy for phytoremediation of Cu-contaminated soils.[Abstract] [Full Text] [Related] [New Search]