These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy.
    Author: Li TR, Jia YJ, Wang Q, Shao XQ, Zhang P, Lv RJ.
    Journal: Brain Res; 2018 Dec 01; 1700():56-65. PubMed ID: 30006293.
    Abstract:
    Accumulative evidence demonstrates that there is an inseparable connection between inflammation and temporal lobe epilepsy (TLE). Some recent studies have found that the multifunctional microRNA-155 (miR-155) is a key regulator in controlling the neuroinflammatory response of TLE rodent animals and patients. The aim of the present study was to investigate the dynamic expression pattern of tumor necrosis factor alpha (TNF-α) as a pro-inflammatory cytokine and miR-155 as a posttranscriptional inflammation-related miRNA in the hippocampus of TLE rat models and patients. We performed real-time quantitative PCR (qRT-PCR) on the rat hippocampus 2 h, 7 days, 21 days and 60 days following kainic acid-induced status epilepticus (SE) and on hippocampi obtained from TLE patients and normal controls. To further characterize the relationship between TNF-α and miR-155, we examined the effect of antagonizing miR-155 on TNF-α secretion using its antagomir. Here, we found that TNF-α secretion and miR-155 expression levels were correlated after SE. The expression of TNF-α reached peak levels in the acute phase (2h post-SE) of seizure and then gradually decreased; however, it rose again in the chronic phase (60 days post-SE). miR-155 expression started to increase 2 h post-SE, reached peak levels in the latent phase (7 days post-SE) of seizure and then gradually decreased. The variation in the trend of miR-155 lagged behind that of TNF-α. In patients with TLE, the expression levels of both TNF-α and miR-155 were also significantly increased. Furthermore, antagonizing miR-155 inhibited the production of TNF-α in the hippocampal tissues of TLE rat models. Our findings demonstrate a critical role for miR-155 in the physiological regulation of the TNF-α pro-inflammatory response and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, regulation of the miR-155/TNF-α axis may be a new therapeutic target for TLE.
    [Abstract] [Full Text] [Related] [New Search]