These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of particulates on metabolism and mutagenicity of benzo[a]pyrene.
    Author: Bevan DR, Manger WE.
    Journal: Chem Biol Interact; 1985 Dec 17; 56(1):13-28. PubMed ID: 3000634.
    Abstract:
    Mechanisms of co-carcinogenicity of particulates, such as iron oxide and asbestos, and benzo[a]pyrene (B[a]P) are not completely understood. Particulates dramatically alter rates of uptake of B[a]P into membranes, a factor which could account for co-carcinogenicity. However, B[a]P must be activated to reactive forms to be carcinogenic and mutagenic so alterations in metabolism of B[a]P by particulates also could result in co-carcinogenesis. To elucidate mechanisms of particulate-B[a]P co-carcinogenesis, we have correlated rates of uptake of B[a]P into microsomes with metabolism of B[a]P and with mutagenicity of B[a]P in the Ames test. In general, aryl hydrocarbon hydroxylase (AHH) activity paralleled rates of uptake of B[a]P, though some inhibition of AHH activity by particulates which was not attributable to availability of B[a]P was evident. This inhibition was studied further by assaying separately mixed function oxidase and epoxide hydrase activities in the presence of particulates. Both chrysotile and iron oxide inhibited O-deethylation of 7-ethoxyresorufin and hydration of B[a]P-4,5-oxide. To determine effects of this inhibition on activation of B[a]P to reactive forms, we studied profiles of metabolites of B[a]P and mutagenicity of B[a]P. The only alteration in profiles of B[a]P metabolites produced by particulates was that due to effects on rates of uptake. Similarly, mutagenicity of B[a]P was positively correlated with rates of uptake into microsomes. We conclude that the predominant effects of chrysotile and iron oxide are in altering rates of uptake of particle-adsorbed B[a]P. Changes in uptake rates then result in alterations of B[a]P metabolism and mutagenicity.
    [Abstract] [Full Text] [Related] [New Search]