These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synergistic inhibition of complement induced granulocyte margination by BW755C and calcium channel blockers.
    Author: Issekutz AC, Rochon Y, Ripley M.
    Journal: Int J Immunopharmacol; 1985; 7(6):791-800. PubMed ID: 3000960.
    Abstract:
    Intravenous infusion of granulocyte (PMNL) chemotactic factors including C5ades Arg present in zymosan activated plasma (ZAP), induces granulocytopenia due to PMNL margination. Since some PMNL responses are dependent on Ca++ ions and lipoxygenation of arachidonic acid, we evaluated the effects of a lipoxygenase (and cyclooxygenase) inhibitor, BW755C and Ca++ channel blocking agents, verapamil and nifedipine, on chemotactic factor induced granulocytopenia and margination in rabbits. BW755C (20 mg/kg i.v.) treatment significantly attenuated ZAP induced granulocytopenia. Verapamil or nifedipine alone were without effect. However, combined treatment with BW755C and verapamil or nifedipine (250 micrograms/kg) completely prevented ZAP-induced granulocytopenia. Ibuprofen, a cyclooxygenase inhibitor, was without effect either by itself or in combination with the calcium channel blockers. In striking contrast to the effect on ZAP-induced granulocytopenia, BW755C plus verapamil or nifedipine had virtually no effect on f-met-leu-phe, platelet activating factor or leukotriene B4 induced granulocytopenia. PMNL aggregation in vitro in response to all of the above chemotactic factors was inhibited by BW775C to similar degrees (56-75%) and was not influenced by simultaneous treatment with verapamil. We conclude that: (a) inhibitors of the lipoxygenase pathway may synergize with Ca++ channel blocking agents in inhibiting PMNL responses to complement derived chemotactic factors in vivo; (b) that in vivo PMNL margination to other chemotactic factors may be less dependent on endogenous lipoxygenation and/or Ca++ fluxes; and (c) there is a poor correlation between pharmacological inhibition of PMNL aggregation in vitro and PMNL margination in vivo in this system.
    [Abstract] [Full Text] [Related] [New Search]