These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNMT1 controls LncRNA H19/ERK signal pathway in hepatic stellate cell activation and fibrosis.
    Author: Yang JJ, She Q, Yang Y, Tao H, Li J.
    Journal: Toxicol Lett; 2018 Oct 01; 295():325-334. PubMed ID: 30010033.
    Abstract:
    Hepatic stellate cells (HSCs) activation is considered as a pivotal event in liver fibrosis. In HSCs activation and fibrosis, epigenetic events are important. Although HSCs activation alters DNA methylation, it is unknown, whether it also affects other epigenetic processes, including LncRNA and its recognition. The aim of this study was to identify the mechanism of DNA methyltransferase 1 (DNMT1) expression and its role in regulating LncRNA H19 during HSCs activation and fibrosis. Expression of DNMT1 and LncRNA H19 were determined in activated HSCs and CCl4-induced rat liver fibrosis tissue. The relationship between the LncRNA H19 and DNMT1 expression was examined in vitro. LncRNA H19 expression was reduced in activated HSCs and rat liver fibrosis tissue, whereas DNMT1 expression and methylation of the LncRNA H19 promoter were increased. Treatment of HSCs of DNMT1-siRNA blocked cell proliferation. Knockdown of DNMT1 elevated H19 expression in activated HSCs, and over-expression of DNMT1 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on ERK signal pathway. Treatment HSCs with H19-siRNA increased the expression of p-ERK1/2 in HSCs. Treatment with 5'-aza-2'-deoxycytidine in activated HSCs model reduced fibrosis gene and DNMT1 expression, enhanced H19 expression, and attenuated HSCs activation. These data connect HSCs activation with a DNMT1-LncRNA H19 epigenetic pathway that is important for liver fibrosis.
    [Abstract] [Full Text] [Related] [New Search]