These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeting signal-transducer-and-activator-of-transcription 3 sensitizes human cutaneous melanoma cells to BRAF inhibitor.
    Author: Wang X, Qu H, Dong Y, Wang G, Zhen Y, Zhang L.
    Journal: Cancer Biomark; 2018; 23(1):67-77. PubMed ID: 30010109.
    Abstract:
    Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. To define molecular mechanisms of vemurafenib resistance, we generated A375-R, WM35-R cell lines resistant to vemurafenib and show that the phosphorylated (p)-STAT3 was upregulated in these cells in vitro and in vivo. In particular, activation of the Signal-transducer-and-activator-of-transcription 3 (STAT3) pathway was associated with vemurafenib resistance. Inhibition of this pathway with STAT3-specific siRNA (shRNA) sensitized A375-R, WM35-R cells to vemurafenib and induced apoptosis in vitro and in vivo. Moreover, targeting STAT3 induced expression of miR-579-3p and elicited resistance to vemurafenib. However, targeting microRNA (miR)-579-3p with anti-miR-579-3p reversed the resistance to vemurafenib. Together, these results indicated that STAT3-mediated downexpression of miR-579-3p caused resistance to vemurafenib. Our findings suggest novel approaches to overcome resistance to vemurafenib by combining vemurafenib with STAT3 sliencing or miR-579-3p overexpression.
    [Abstract] [Full Text] [Related] [New Search]