These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Xanthomonas oryzae pv. oryzae chemotaxis components and chemoreceptor Mcp2 are involved in the sensing of constituents of xylem sap and contribute to the regulation of virulence-associated functions and entry into rice.
    Author: Kumar Verma R, Samal B, Chatterjee S.
    Journal: Mol Plant Pathol; 2018 Nov; 19(11):2397-2415. PubMed ID: 30011125.
    Abstract:
    The Xanthomonas group of phytopathogens causes several economically important diseases in crops. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo), it has been proposed that chemotaxis may play a role in the entry and colonization of the pathogen inside the host. However, components of the chemotaxis system, including the chemoreceptors involved, and their role in entry and virulence, are not well defined. In this study, we show that Xoo displays a positive chemotaxis response to components of rice xylem sap-glutamine, xylose and methionine. In order to understand the role of chemotaxis components involved in the promotion of chemotaxis, entry and virulence, we performed detailed deletion mutant analysis. Analysis of mutants defective in chemotaxis components, flagellar biogenesis, expression analysis and assays of virulence-associated functions indicated that chemotaxis-mediated signalling in Xoo is involved in the regulation of several virulence-associated functions, such as motility, attachment and iron homeostasis. The ∆cheY1 mutant of Xoo exhibited a reduced expression of genes involved in motility, adhesins, and iron uptake and metabolism. We show that the expression of Xoo chemotaxis and motility components is induced under in planta conditions and is required for entry, colonization and virulence. Furthermore, deletion analysis of a putative chemoreceptor mcp2 gene revealed that chemoreceptor Mcp2 is involved in the sensing of xylem sap and constituents of xylem exudate, including methionine, serine and histidine, and plays an important role in epiphytic entry and virulence. This is the first report of the role of chemotaxis in the virulence of this important group of phytopathogens.
    [Abstract] [Full Text] [Related] [New Search]