These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation.
    Author: Ba Z, Chen Z, Huang Y, Feng D, Zhao Q, Zhu J, Wu D.
    Journal: Int J Nanomedicine; 2018; 13():3883-3896. PubMed ID: 30013342.
    Abstract:
    INTRODUCTION: It is predicted that with increased life expectancy in the whole world, there will be a greater demand for synthetic biomedical materials to repair or regenerate lost, injured or diseased tissues. Natural polymers, as biomedical materials, have been widely applied in the field of regenerative medicine. MATERIALS AND METHODS: By incorporation of nanoporous diopside bioglass (nDPB) into glia-din (GL) matrix, macro-nanoporous scaffolds of nDPB/GL composites (DGC) were fabricated by method of solution compressing and particles leaching. RESULTS: The results revealed that the DGC scaffolds possessed well-interconnected macropores of 200-500 μm and nanopores of 4 nm, and the porosity and degradability of DGC scaffolds remarkably increased with the increase in nDPB content. In addition, in vitro cell experiments revealed that the adhesion and growth of MC3T3-E1 cells on DGC scaffolds were significantly promoted, which depended on nDPB content. Moreover, the results of histological evaluations confirmed that the osteogenic properties and degradability of DGC scaffolds in vivo significantly improved, which were nDPB content dependent. Furthermore, the results of immunohistochemical analysis demonstrated that, with the increase in nDPB content, the type I collagen expression in DGC scaffolds in vivo obviously enhanced, indicating excellent osteogenesis. DISCUSSION AND CONCLUSION: The results demonstrated that the DGC scaffolds containing 30 wt% nDPB (30nDGC) exhibited good biocompatibility and new bone formation ability, which might have a great potential for applications in bone regeneration.
    [Abstract] [Full Text] [Related] [New Search]