These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison and application of fluorescence EEMs and DRIFTS combined with chemometrics for tracing the geographical origin of Radix Astragali.
    Author: Hu L, Yin C, Ma S, Liu Z.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec 05; 205():207-213. PubMed ID: 30015027.
    Abstract:
    Selection of the appropriate method for traceability may be of great interest for the characterization of food authenticity and to reveal falsifications. The possibility of tracing the geographical origins of Radix Astragali based on diffuse reflectance mid-infrared Fourier transform spectroscopy (DRIFTS) technique and fluorescence fingerprints (EEMs) technique was investigated in this work. DRIFTS technique combined with PCA and PLS-DA and EEMs technique combined with M-PCA and N-PLS-DA were used to determine the geographical origin of Radix Astragali samples, respectively. DRIFTS-PLS-DA provided total recognition rates of 98.4% for all Radix Astragali samples in the training sets and 94.6% in the predicted sets. Compared with the DRIFTS, EEMs combined with chemometrics obtained more accurate recognition results. The total recognition rates (RRs) of the training sets and prediction sets obtained with EEMs-N-PLS-DA were all 100%. The good classification results of fluorescence fingerprints technique should be attributed mainly to two reasons. One reason is that three-dimensional fluorescence spectrum can provide more information than two-dimensional DRIFTS, and the other reason is that fluorescence spectrum has higher sensitivity and selectivity than the DRIFTS. Therefore, fluorescence fingerprint (EEMs) technique combined with chemometrics results more adequate for tracing the food geographical origin. It should be noted that the more the analysis target contains fluorescent substances, the more accurate results are obtained by using the fluorescent fingerprint method. Conversely, if the classification object contains very few fluorescent substances, the classification result may not be as good as the DRIFTS method. Furthermore, due to relatively cumbersome operation of fluorescence method, EEMs fluorescence method is unsuitable for rapid analysis as compared to infrared method.
    [Abstract] [Full Text] [Related] [New Search]