These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship of ACTH1-39-immunostained fibers and magnocellular neurons in the paraventricular nucleus of rat hypothalamus.
    Author: Piekut DT.
    Journal: Peptides; 1985; 6(5):883-90. PubMed ID: 3001668.
    Abstract:
    Dual antigen immunocytochemical staining procedures were used in the same tissue section to determine the distribution of ACTH immunostained fibers and varicosities within the magnocellular and parvocellular divisions in the paraventricular nucleus (PVN) of rat hypothalamus and elucidate its anatomical relationship to vasopressin (VP) and oxytocin (OXY)-containing neurons. Double immunostained preparations using glucose oxidase-antiglucose oxidase complex combined with PAP complex to visualize two antigens with contrasting colors in the same tissue section were employed. ACTH-immunoreactive (ir) fibers were distributed throughout the periventricular stratum and the parvocellular component of the PVN; in the latter area fibers were particularly dense in the ventral medial portion of the medial parvocellular division. Dual immunostained sections revealed a close anatomical association between opiocortin fibers and oxytocin and vasopressin parvocellular neurons. ACTH immunostained fibers were present in the anterior and medial magnocellular component of PVN and in the ventral medial portion of the posterior magnocellular division; these immunoreactive fibers were in intimate proximity to oxytocin-ir perikarya. The very close approximation between the ACTH-ir fibers and oxytocin-containing cell bodies suggests potential cell to cell communication between the two peptidergic systems in PVN. Few ACTH immunostained fibers were seen in the dorsal lateral portion of the posterior magnocellular division in which vasopressinergic neurons predominate. The present anatomical study supports pharmacological and physiological studies which indicate that opioids can influence the activity of magnocellular PV neurons. This study also elucidates an anatomical relationship between opiocortins (ACTH1-39) and parvocellular PV neurons which suggests that the opiocortin system may play a role in the regulation of both the neuroendocrine and autonomic activities of specific PV neurons.
    [Abstract] [Full Text] [Related] [New Search]