These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis and antiproliferative evaluation of novel sulfanilamide-1,2,3-triazole derivatives as tubulin polymerization inhibitors.
    Author: Guo S, Zhen Y, Guo M, Zhang L, Zhou G.
    Journal: Invest New Drugs; 2018 Dec; 36(6):1147-1157. PubMed ID: 30019099.
    Abstract:
    Microtubule as an important target in the cancer therapy was used to design novel tubulin polymerization inhibitors. Sulfanilamide-1,2,3-triazole hybrids were designed by a molecular hybridization strategy and their antiproliferative activity against three selected cancer cell lines (BGC-823, MGC-803 and SGC-7901) were evaluated. All sulfanilamide-1,2,3-triazole hybrids displayed potent inhibitory activity against all cell lines. In particular, compound 10b showed the most excellent inhibitory effect against MGC-803 cells, with an IC50 value of 0.4 μM. Cellular mechanism studies elucidated that 10b induced apoptosis by decreasing the expression level of Bcl-2 and Parp and increasing the expression level of BAX. 10b inhibited the epithelial-mesenchymal transition process by up-regulating E-cadherin and down-regulating N-cadherin. Furthermore, the tubulin polymerization inhibitory activity in vitro of 10b was 2.4 μM. In vivo anticancer assay, 10b effectively inhibited MGC-803 xenograft tumor growth without causing significant loss of body weight. These sulfanilamide-1,2,3-triazole hybrids as potent tubulin polymerization inhibitors might be used as promising candidates for cancer therapy.
    [Abstract] [Full Text] [Related] [New Search]