These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Author: Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS. Journal: Bioresour Technol; 2018 Nov; 267():242-248. PubMed ID: 30025320. Abstract: The catalytic activity of engineered biochar was scrutinized for generation of glucose and hydroxymethylfurfural (HMF) from starch-rich food waste (bread, rice, and spaghetti). The biochar catalysts were synthesized by chemical activation of pinewood sawdust with phosphoric acid at 400-600 °C. Higher activation temperatures enhanced the development of porosity and acidity (characterized by COPO3 and CPO3 surface groups), which imparted higher catalytic activity of H3PO4-activated biochar towards starch hydrolysis and fructose dehydration. Positive correlations were observed between HMF selectivity and ratio of mesopore to micropore volume, and between fructose conversion and total acid density. High yields of glucose (86.5 Cmol% at 150 °C, 20 min) and HMF (30.2 Cmol% at 180 °C, 20 min) were produced from rice starch and bread waste, respectively, over H3PO4-activated biochar. These results highlighted the potential of biochar catalyst in biorefinery as an emerging application of engineered biochar.[Abstract] [Full Text] [Related] [New Search]