These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Author: Bahrami S, Norouzi M. Journal: Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356. Abstract: In this study, a three-dimensional analysis of the non-Newtonian blood flow was carried out in the left coronary bifurcation. The Casson model and hyperelastic and rigid models were used as the constitutive equation for blood flow and vessel wall model, respectively. Physiological conditions were considered first normal and then compliant with hypertension disease with the aim of evaluating hemodynamic parameters and a better understanding of the onset and progression of atherosclerosis plaques in the coronary artery bifurcation. Two-way fluid-structure interaction method applying a fully implicit second-order backward Euler differencing scheme has been used which is performed in the commercial code ANSYS and ANSYS CFX (version 15.0). When artery deformations and blood pressure are associated, arbitrary Lagrangian-Eulerian formulation is employed to calculate the artery domain response using the temporal blood response. As a result of bifurcation, noticeable velocity reduction and backflow formation decrease shear stress and made it oscillatory at the starting point of the LCx branch which caused the shear stress to be less than 1 and 2 Pa in the LCx and the LAD branches, respectively. Oscillatory shear index (OSI) as a hemodynamic parameter represents the increase in residence time and oscillatory wall shear stress. Because of using the ideal 3D geometry and realistic physiological conditions, the values obtained for shear stress are more accurate than the previous studies. Comparing the results of this study with previous clinical investigations shows that the regions with low wall shear stress less than 1.20 Pa and with high OSI value more than 0.3 are in more potential risk to the atherosclerosis plaque development, especially in the posterior after the bifurcation.[Abstract] [Full Text] [Related] [New Search]