These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ethylene dimethanesulfonate destroys Leydig cells in the rat testis.
    Author: Morris ID, Phillips DM, Bardin CW.
    Journal: Endocrinology; 1986 Feb; 118(2):709-19. PubMed ID: 3002764.
    Abstract:
    Ultrastructural changes in the interstitial cells of the adult rat testis were studied up to 45 days after administration of a single dose (100 mg/kg) of the antifertility compound ethylene dimethanesulfonate (EDS). Most Leydig cells showed degenerative changes 12 h after treatment. Twenty-four and 48 h after injection, all Leydig cells observed showed gross degenerative changes. At 4 and 14 days, intact Leydig cells could not be identified in the interstitial spaces. Twenty-one days after treatment with EDS, small Leydig cells were visible, and at 45 days, Leydig cells appeared normal. The seminiferous epithelium appeared morphologically normal until 4 days after injection of EDS, when slight abnormalities were observed. At 14 and 21 days, the seminiferous epithelium was grossly abnormal, but at 48 days, spermatogenesis appeared normal. Twelve, 24, and 48 h after treatment, large quantities of material, presumably from dead Leydig cells, were observed within the macrophage cytoplasm. The predominant cell in the interstitial space 4 and 14 days after EDS was the macrophage. Inclusions from the dead Leydig cells within the cytoplasm of the macrophages had almost disappeared. LH receptors (hCG binding) in testicular homogenates were consistent with the cytological changes in Leydig cells. Receptor concentration was low at 24 h and was almost zero at 4 days. This change was accompanied by a decrease in serum testosterone to castrate levels by 2 days. The responses of the endocrine system to destruction of the Leydig cell by EDS, as monitored by serum FSH, LH, and testosterone, were slower than those after castration, indicating that the response to EDS reflects the time required to kill the Leydig cell rather than direct impairment of the steroidogenic pathway. These experiments demonstrate that Leydig cells can be specifically destroyed by a cytotoxic drug. The availability of a specific cytotoxic agent for Leydig cells offers further opportunities to study the interrelationships between the Leydig cell and the seminiferous tubule.
    [Abstract] [Full Text] [Related] [New Search]