These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel electrochemical sensor based on Fe3O4-doped nanoporous carbon for simultaneous determination of diethylstilbestrol and 17β-estradiol in toner. Author: Chen X, Shi Z, Hu Y, Xiao X, Li G. Journal: Talanta; 2018 Oct 01; 188():81-90. PubMed ID: 30029450. Abstract: In this paper, Fe3O4-doped nanoporous carbon (Fe3O4-NC) was synthesized through the carbonization of Fe-porous coordination polymer (Fe-PCP), which are also known as metal-organic framework (MOF), and fabricated into an electrochemical sensor for simultaneous analysis of diethylstilbestrol (DES) and 17β-estradiol (E2) in toner. Fe3O4-NC was characterized by scanning electron microscope (SEM), powder X-ray diffraction (pXRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, N2 adsorption-desorption and so on. It is of great practical significance to achieve the simultaneous determination of the two estrogens because estrogens are co-existing in many real samples. The simultaneous determination of two common estrogens, DES and E2, was achieved through electro-catalytically oxidization at a Fe3O4-NC modified glassy carbon electrode (Fe3O4-NC/GCE). The peak currents of DES and E2 increased linearly as their concentrations increasing from 0.01 to 12 μmol/L and from 0.01 to 20 μmol/L, with detection limits of 4.6 nmol/L and 4.9 nmol/L (S/N = 3), respectively. This work was focused on the simultaneous determination of the two estrogens in toner. Furthermore, the recoveries of DES and E2 were 91.2-110%, in actual toner samples. The experimental results manifest that the sensor with a stronger anti-interference ability can be used for the simultaneous detection of DES and E2 in the actual toner sample.[Abstract] [Full Text] [Related] [New Search]