These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A malectin-like/leucine-rich repeat receptor protein kinase gene, RLK-V, regulates powdery mildew resistance in wheat. Author: Hu P, Liu J, Xu J, Zhou C, Cao S, Zhou W, Huang Z, Yuan S, Wang X, Xiao J, Zhang R, Wang H, Zhang S, Xing L, Cao A. Journal: Mol Plant Pathol; 2018 Dec; 19(12):2561-2574. PubMed ID: 30030900. Abstract: Pattern recognition receptors (PRRs) can trigger plant immunity through the recognition of pathogen-associated molecular patterns. In this study, we report that a malectin-like/leucine-rich repeat receptor protein kinase gene, RLK-V, from Haynaldia villosa putatively acts as a PRR to positively regulate powdery mildew resistance caused by Blumeria graminis f. sp. tritici (Bgt) in wheat. RLK-V has two alternatively spliced transcripts corresponding to an intact RLK-V1.1 and a truncated RLK-V1.2 caused by intron retention. Expression analysis showed that both transcripts could be up-regulated by Bgt in resistant materials, whereas the functional RLK-V1.1 was expressed only after Bgt inoculation. Promoter activity assays indicated that RLK-V could respond to Bgt even in susceptible wheat. Silencing of RLK-V in Pm21-carrying resistant materials resulted in compromised resistance to Bgt. In addition, over-expression of RLK-V1.1 in Pm21-lacking susceptible Yangmai158 and SM-1 by single-cell transient expression and stable transformation in Yangmai158 could improve powdery mildew resistance. We propose that RLK-V regulates basal resistance to powdery mildew, which is also required for broad-spectrum resistance mediated by the Pm21 gene. Over-expression of RLK-V1.1 could trigger cell death in Nicotiana benthamiana, and RLK-V1.1 transgenic wheat accumulated more reactive oxygen species and displayed a stronger hypersensitive response than did the recipient, which led to enhanced Bgt resistance. However, constitutive activation of RLK-V1.1 resulted in the abnormal growth of transgenic plants.[Abstract] [Full Text] [Related] [New Search]