These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ligand binding to (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein. Author: Kapakos JG, Steinberg M. Journal: J Biol Chem; 1986 Feb 15; 261(5):2084-9. PubMed ID: 3003093. Abstract: The equilibrium binding of sodium, potassium, and adenine nucleotides to dog kidney (Na,K)-ATPase was studied by measuring changes in the fluorescence of enzyme labeled with 5-iodoacetamidofluorescein (5-IAF). The intensity of the fluorescence emission at 520 nm of the bound fluorescein (excited at 490 nm) is increased by ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP (but not AMP), and Na+, and decreased by K+, Rb+, NH+4, and LI+. Thus the fluorescence effects correlate with the ability of these groups of ligands to stabilize E1 and E2 conformations, respectively. The Na+-induced increase in fluorescence has two components: a slow, high-affinity increase of approximately 7% (K0.5 = 0.16 mM) with positive cooperativity; and a large (approximately 15%), rapid, low-affinity (K0.5 = 34 mM) increase that is not cooperative. The K0.5 for the high-affinity effect is decreased by oligomycin and increased by K+. ATP effects on the fluorescence follow Michaelis-Menten kinetics and are of high affinity (K0.5 = 0.12 microM); K+ increases the K0.5 for ATP, AMP-PNP, and ADP but does not induce cooperative behavior. K+ itself decreases the fluorescence signal by about 9%, with high affinity (K0.5 = 5 microM), showing Michaelis-menten behavior in the absence of other ligands, while with ATP, Na+, or Mg2+ present, K+ effects are cooperative and of lower affinity.[Abstract] [Full Text] [Related] [New Search]