These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peptide Nucleic Acid Probe-Based Analysis as a New Detection Method for Clarithromycin Resistance in Helicobacter pylori. Author: Jung DH, Kim JH, Jeong SJ, Park SY, Kang IM, Lee KH, Song YG. Journal: Gut Liver; 2018 Nov 15; 12(6):641-647. PubMed ID: 30037168. Abstract: BACKGROUND/AIMS: Helicobacter pylori eradication rates are decreasing because of increases in clarithromycin resistance. Thus, finding an easy and accurate method of detecting clarithromycin resistance is important. METHODS: We evaluated 70 H. pylori isolates from Korean patients. Dual-labeled peptide nucleic acid (PNA) probes were designed to detect resistance associated with point mutations in 23S ribosomal ribonucleic acid gene domain V (A2142G, A2143G, and T2182C). Data were analyzed by probe-based fluorescence melting curve analysis based on probe-target dissociation temperatures and compared with Sanger sequencing. RESULTS: Among 70 H. pylori isolates, 0, 16, and 58 isolates contained A2142G, A2143G, and T2182C mutations, respectively. PNA probe-based analysis exhibited 100.0% positive predictive values for A2142G and A2143G and a 98.3% positive predictive value for T2182C. PNA probe-based analysis results correlated with 98.6% of Sanger sequencing results (κ-value=0.990; standard error, 0.010). CONCLUSIONS: H. pylori clarithromycin resistance can be easily and accurately assessed by dual-labeled PNA probe-based melting curve analysis if probes are used based on the appropriate resistance-related mutations. This method is fast, simple, accurate, and adaptable for clinical samples. It may help clinicians choose a precise eradication regimen.[Abstract] [Full Text] [Related] [New Search]