These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elevated baseline work rate slows pulmonary oxygen uptake kinetics and decreases critical power during upright cycle exercise. Author: Goulding RP, Roche DM, Marwood S. Journal: Physiol Rep; 2018 Jul; 6(14):e13802. PubMed ID: 30039557. Abstract: Critical power is a fundamental parameter defining high-intensity exercise tolerance, and is related to the phase II time constant of pulmonary oxygen uptake kinetics (τV˙O2). Whether this relationship is causative is presently unclear. This study determined the impact of raised baseline work rate, which increases τV˙O2, on critical power during upright cycle exercise. Critical power was determined via four constant-power exercise tests to exhaustion in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a baseline work rate of 90% of the gas exchange threshold (M→S). During these exercise transitions, τV˙O2 and the time constant of muscle deoxyhemoglobin kinetics (τ[HHb + Mb] ) (the latter via near-infrared spectroscopy) were determined. In M→S, critical power was lower (M→S = 203 ± 44 W vs. U→S = 213 ± 45 W, P = 0.011) and τV˙O2 was greater (M→S = 51 ± 14 sec vs. U→S = 34 ± 16 sec, P = 0.002) when compared with U→S. Additionally, τ[HHb + Mb] was greater in M→S compared with U→S (M→S = 28 ± 7 sec vs. U→S = 14 ± 7 sec, P = 0.007). The increase in τV˙O2 and concomitant reduction in critical power in M→S compared with U→S suggests a causal relationship between these two parameters. However, that τ[HHb + Mb] was greater in M→S exculpates reduced oxygen availability as being a confounding factor. These data therefore provide the first experimental evidence that τV˙O2 is an independent determinant of critical power. Keywords critical power, exercise tolerance, oxygen uptake kinetics, power-duration relationship, muscle deoxyhemoglobin kinetics, work-to-work exercise.[Abstract] [Full Text] [Related] [New Search]