These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localization and role of pyruvate kinase isoenzymes in the regulation of carbohydrate metabolism and pyruvate recycling in rat kidney cortex.
    Author: Schering B, Reinacher M, Schoner W.
    Journal: Biochim Biophys Acta; 1986 Mar 19; 881(1):62-71. PubMed ID: 3004599.
    Abstract:
    This work was performed to gain more information on the role of pyruvate kinase isoenzymes in the regulation of renal carbohydrate metabolism. Immunohistochemically, pyruvate kinase type L is shown to be localized in the proximal tubule of the nephron and pyruvate kinase type M2 in the distal tubule and the collecting duct. a tight relationship between gluconeogenesis and pyruvate recycling was found. The rate of gluconeogenesis (8 mumol/g wet wt. per 30 min) was of the same order of magnitude as the rate of pyruvate recycling (10.92 mumol/g wet wt. per 30 min). Stimulation of gluconeogenesis from 20 mM lactate in kidney cortex slices of 24-h-starved rats by dibutyryl-cAMP, alanine and parathyroid hormone was connected with a decrease in pyruvate recycling; inhibition of gluconeogenesis due to a lack of Ca2+ in the incubation medium was linked with an increase in pyruvate recycling. The degradation of [6-14C]glucose to lactate, pyruvate, ketone bodies and CO2 and of [2-14C]lactate was unaffected by dibutyryl-cAMP, alanine, epinephrine, vasopressin or the omission of Ca2+ from the incubation medium. 1 mM dibutyryl-cAMP or 5 mM alanine did not alter the activities of oxaloacetate decarboxylase, 'malic' enzyme and malate dehydrogenase from rat kidney cortex. Since aerobic glycolysis in the distal tubules and the collecting ducts is not influenced by hormones, dibutyryl-cAMP and Ca2+, pyruvate kinase type M2 residing in this tissue is unlikely to be a control point of glycolysis. Since this tissue degrades only one-seventh of the glucose formed via gluconeogenesis, it does not contribute significantly to pyruvate recycling. Therefore, the decrease of pyruvate recycling in the presence of dibutyryl-cAMP and alanine in rat kidney cortex slices, leading to increased renal gluconeogenesis, has to be ascribed to the regulation of pyruvate kinase type L.
    [Abstract] [Full Text] [Related] [New Search]