These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IL-1β activation in response to Staphylococcus aureus lung infection requires inflammasome-dependent and independent mechanisms.
    Author: Pires S, Parker D.
    Journal: Eur J Immunol; 2018 Oct; 48(10):1707-1716. PubMed ID: 30051912.
    Abstract:
    Maintaining balanced levels of IL-1β is extremely important to avoid host tissue damage during infection. Our goal was to understand the mechanisms behind the reduced pathology and decreased bacterial burdens in Ifnlr1-/- mice during lung infection with Staphylococcus aureus. Intranasal infection of Ifnlr1-/- mice with S. aureus led to significantly improved bacterial clearance, survival and decrease of proinflammatory cytokines in the airway including IL-1β. Ifnlr1-/- mice treated with recombinant IL-1β displayed increased bacterial burdens in the airway and lung. IL-1β levels in neutrophils from Ifnlr1-/- infected mice lungs were decreased when compared to neutrophils from WT mice. Mice lacking NLRP3 and caspase-1 had reduced IL-1β levels 4 h after infection, due to reductions or absence of active caspase-1 respectively, but levels at 24 h were comparable to WT infected mice. Ifnlr1-/- infected mice had decreases in both active caspase-1 and neutrophil elastase indicating an important role for the neutrophil serine protease in IL-1β processing. By inhibiting neutrophil elastase, we were able to decrease IL-1β levels by 39% in Nlrp3-/- infected mice when compared to WT mice. These results highlight the crucial role of both proteases in IL-1β processing, via inflammasome-dependent and -independent mechanisms.
    [Abstract] [Full Text] [Related] [New Search]