These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopamine, acting through D-2 receptors, inhibits rat striatal adenylate cyclase by a GTP-dependent process.
    Author: Cooper DM, Bier-Laning CM, Halford MK, Ahlijanian MK, Zahniser NR.
    Journal: Mol Pharmacol; 1986 Feb; 29(2):113-9. PubMed ID: 3005824.
    Abstract:
    This report demonstrates that the D-2 dopamine receptors that are present in rat striatum can directly inhibit the activity of adenylate cyclase in a GTP-dependent manner. N-n-propylnorapomorphine evoked a more pronounced inhibition than did dopamine. However, in the presence of the D-1-selective antagonist, SCH 23390, dopamine was also observed to inhibit the enzyme. Forskolin facilitated the detection of D-2 receptor-mediated inhibition by markedly stimulating striatal adenylate cyclase activity. The inhibition was antagonized in a dose-dependent manner by the D-2 receptor antagonist spiperone (Ki value = 70 pM) and was absolutely dependent on the presence of both GTP and sodium ions. Inhibition produced via D-2 receptors was additive with that produced via opiate or adenosine A1 receptors. The nonhydrolyzable GTP analogue, 5'-guanylylimidodiphosphate [Gpp(NH)p], did not substitute for GTP in promoting the D-2 receptor-mediated inhibition. It thus appears that D-2 receptors mediate adenylate cyclase inhibition by processes that have been observed for other neurotransmitters in the striatum and elsewhere. In addition, Gpp(NH)p displayed a Ca2+/calmodulin dependency for its inhibitory effects that was not shared by receptor-mediated, GTP-dependent inhibition.
    [Abstract] [Full Text] [Related] [New Search]