These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serotonin and dopamine independently regulate pituitary beta-endorphin release in vivo.
    Author: Sapun-Malcolm D, Farah JM, Mueller GP.
    Journal: Neuroendocrinology; 1986; 42(3):191-6. PubMed ID: 3005900.
    Abstract:
    Serotonin and dopamine neurons have been shown to exert a stimulatory and inhibitory control, respectively, over pituitary release of beta-endorphin-like immunoreactivity (beta-END-LI). In the present study we sought to determine whether an interaction exists between these two reciprocal mechanisms regulating beta-END-LI in the rat. The intraperitoneal (i.p.) administration of 5 mg/kg quipazine, a serotonin receptor agonist, or 2.5 mg/kg haloperidol, a dopamine receptor antagonist, each elevated circulating levels by beta-END-LI 5-fold over control levels by 30 min post-injection. Pretreatment (1 h) with 5 mg/kg, i.p., cinanserin, a serotonin receptor antagonist, completely blocked the quipazine-induced rise in beta-END-LI without affecting the elevated levels of beta-END-LI in haloperidol-treated animals. Conversely, pretreatment (2 h) with 1 mg/kg, i.p., bromocriptine, a dopamine receptor agonist, had no effect on quipazine-induced release of beta-END-LI but did completely prevent the rise in plasma beta-END-LI due to haloperidol treatment. Gel filtration chromatography revealed that quipazine and haloperidol treatments elevated plasma levels of both beta-END-size immunoreactivity and beta-lipotropin (beta-LPH)-sized immunoreactivity though to different relative degrees. However, since circulating levels of beta-LPH serve as a marker for anterior lobe (AL) beta-END-LI secretion, serotonin and dopamine appear to exert stimulatory and inhibitory control, respectively, over AL beta-END-LI release. Further, the quipazine-induced rise in total plasma beta-END-LI primarily resembled beta-LPH in size and was blocked by cinanserin but not bromocriptine pretreatment. And conversely, bromocriptine but not cinanserin prevented the haloperidol-induced rise in circulating beta-END-LI.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]