These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Individualized Anterior Cruciate Ligament Graft Matching: In Vivo Comparison of Cross-sectional Areas of Hamstring, Patellar, and Quadriceps Tendon Grafts and ACL Insertion Area.
    Author: Offerhaus C, Albers M, Nagai K, Arner JW, Höher J, Musahl V, Fu FH.
    Journal: Am J Sports Med; 2018 Sep; 46(11):2646-2652. PubMed ID: 30059247.
    Abstract:
    BACKGROUND: Recent literature correlated anterior cruciate ligament (ACL) reconstruction failure to smaller diameter of the harvested hamstring (HS) autograft. However, this approach may be a simplification, as relation of graft size to native ACL size is not typically assessed and oversized grafts may impart their own complications. PURPOSE: To evaluate in vivo data to determine if the commonly used autografts reliably restore native ACL size. STUDY DESIGN: Descriptive laboratory study. METHODS: Intraoperative data of the tibial insertion area and HS graft diameter were collected and retrospectively evaluated for 46 patients who underwent ACL reconstruction with HS autografts. Magnetic resonance imaging measurements of the cross-sectional area (CSA) of the possible patellar tendon (PT) and quadriceps tendon (QT) autografts were also done for each patient. The percentages of tibial insertion site area restored by the 3 possible grafts were then calculated and compared for each individual. RESULTS: The mean ACL tibial insertion area was 107.2 mm2 (60.5-155.5 mm2). The mean CSAs of PT, HS, and QT were 33.2, 55.3, and 71.4 mm2, respectively. When all grafts were evaluated, the percentage reconstruction of the insertion area varied from 16.2% to 123.1% on the tibial site and from 25.5% to 176.7% on the femoral site, differing significantly for each graft type ( P < .05). On average, 32.8% of the tibial insertion area would have been filled with PT, 53.6% by HS, and 69.5% by QT. Based on previous cadaveric studies indicating that graft size goal should be 50.2% ± 15% of the tibial insertion area, 82.7% of patients in the HS group were within this range (36.9%, QT; 30.5%, PT), while 65.2% in the PT group were below it and 60.9% in the QT group were above it. CONCLUSION: ACL insertion size and the CSAs of 3 commonly used grafts vary greatly for each patient and are not correlated with one another. Thus, if the reconstructed ACL size is determined by the harvested autograft size alone, native ACL size may not be adequately restored. PT grafts tended to undersize the native ACL, while QT might oversize it. CLINICAL RELEVANCE: These results may help surgeons in preoperative planning, as magnetic resonance imaging measurements can be helpful in determining individualized graft choice to adequately restore the native ACL.
    [Abstract] [Full Text] [Related] [New Search]