These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation.
    Author: Yan P, Tang H, Chen X, Ji S, Jin W, Zhang J, Shen J, Deng H, Zhao X, Shen Q, Huang H.
    Journal: Biosci Rep; 2018 Dec 21; 38(6):. PubMed ID: 30061174.
    Abstract:
    Peritoneal fibrosis is a severe complication arising from long-term peritoneal dialysis (PD). Tamoxifen (Tamo) has been clinically proven effective in a series of fibrotic diseases, such as PD-associated encapsulating peritoneal sclerosis (EPS), but the mechanisms underlying Tamoxifen's protective effects are yet to be defined. In the present study, C57BL/6 mice received intraperitoneal injections of either saline, 4.25% high glucose (HG) PD fluid (PDF) or PDF plus Tamoxifen each day for 30 days. Tamoxifen attenuated thickening of the peritoneum, and reversed PDF-induced peritoneal expression of E-cadherin, Vimentin, matrix metalloproteinase 9 (MMP9), Snail, and β-catenin. Mouse peritoneal mesothelial cells (mPMCs) were cultured in 4.25% glucose or 4.25% glucose plus Tamoxifen for 48 h. Tamoxifen inhibited epithelial-to-mesenchymal transition (EMT) as well as phosphorylation of glycogen synthase kinase-3β (GSK-3β), nuclear β-catenin, and Snail induced by exposure to HG. TWS119 reversed the effects of Tamoxifen on β-catenin and Snail expression. In conclusion, Tamoxifen significantly attenuated EMT during peritoneal epithelial fibrosis, in part by inhibiting GSK-3β/β-catenin activation.
    [Abstract] [Full Text] [Related] [New Search]