These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 4-HPR Is an Endoplasmic Reticulum Stress Aggravator and Sensitizes Breast Cancer Cells Resistant to TRAIL/Apo2L.
    Author: Anding AL, Jones JD, Newton MA, Curley RW, Clagett-Dame M.
    Journal: Anticancer Res; 2018 Aug; 38(8):4403-4416. PubMed ID: 30061204.
    Abstract:
    BACKGROUND/AIM: N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid, less toxic than the parent all-trans retinoic acid (RA). Unlike RA, 4-HPR induces apoptosis in tumor cells. Because 4-HPR can hydrolyze to liberate RA, a potent human teratogen, the unhydrolyzable ketone analog of 4-HPR, 4-hydroxybenzylretinone (4-HBR) has been prepared and has been found to cause apoptosis in tumor cells and shrink carcinogen-induced rat mammary tumors as 4-HPR does. Herein, we examined the mechanism whereby 4-HPR and 4-HBR induce apoptosis and death in breast cancer cells. MATERIALS AND METHODS: Gene expression profiling was conducted in MCF-7 cells over a 1.5- to 6-h time course and changes were validated by quantitative polymerase chain reaction (qPCR). Growth arrest and DNA damage-inducible protein 153 (GADD153 or C/EBP homologous protein, CHOP) was knocked down and the effect on 4-HPR-induced cell death and gene expression was assessed. 4-HPR synergy with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL or Apo2 ligand) was also examined. RESULTS: Drug treatment induced increased expression of endoplasmic reticulum (ER) stress-related and pro-apoptotic genes. Gene expression changes were verified by qPCR in three invasive ductal breast carcinoma cell lines (MCF-7, T-47D, MDA-MB-231). GADD153 showed the largest increase in the microarray experiment; however, knockdown of GADD153 did not abrogate apoptosis and death. Genes related to the extrinsic pathway of apoptosis including a receptor for TRAIL, death receptor 5 (DR5), were up-regulated by drug treatment. A dose of 4-HPR that alone is ineffective in killing TRAIL-resistant MCF-7 cells, synergized with recombinant TRAIL to induce breast cancer cell death. CONCLUSION: 4-HPR and analogs might be useful in sensitizing tumor cells to death receptor agonists.
    [Abstract] [Full Text] [Related] [New Search]