These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of Polypropylene Modified by Blending Elastomer and Nano-Silica. Author: Chi X, Cheng L, Liu W, Zhang X, Li S. Journal: Materials (Basel); 2018 Jul 30; 11(8):. PubMed ID: 30061550. Abstract: Polypropylene (PP) contains promising application prospects in thermoplastic cables for high voltage direct current (HVDC) power transmission because of its outstanding thermal and dielectric properties. However, the problem of poor toughness and space charge has restricted the application of pure PP in HVDC cables. In this paper, polyolefin elastomer (POE) and nano-silica were blended thoroughly and added into a PP mixture by a melting method. Scanning electron microscopy (SEM) was employed to observe the dispersion of POE and nanoparticles. Thermal properties were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Mechanical properties were evaluated by tensile tests. The elastomeric properties of composites were improved as the dispersed POE could transfer and homogenize external mechanical forces. DC breakdown results showed that the fail strength of composite with 10 phr POE and 1 phr nano-silica was obviously enhanced. The pulsed electro-acoustic (PEA) results showed that the injection and accumulation of space charge was increased by the introduction of POE, while it was restrained by the collective effect caused by nano-silica filling. X-ray diffraction (XRD) spectrograms showed that secondary ordered structures existed in the composites of PP, POE, and nano-silica, and that the ordered structure around the nanoparticles contributed to the enhancement of breakdown strength. The mechanical and dielectric properties were modified synergistically, which made the modified PP a propitious insulation material for HVDC cables.[Abstract] [Full Text] [Related] [New Search]