These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arrest of sex-specific adaptation during the evolution of sexual dimorphism in Drosophila.
    Author: Stewart AD, Rice WR.
    Journal: Nat Ecol Evol; 2018 Sep; 2(9):1507-1513. PubMed ID: 30061561.
    Abstract:
    Sexually antagonistic selection arises when a trait expressed in both sexes (a shared trait) is selected towards different, sex-specific optima. Sex-discordant selection causes different alleles to be favoured in each sex (intralocus sexual conflict). A key parameter responsible for generating this conflict is the intersexual genetic correlation (rMF), which determines the degree to which heritable genetic variation for the shared trait produces a similar phenotype in both sexes. A strong, positive rMF interferes with adaptation when there is sex-discordant selection. In principle, the rMF can evolve in response to sex-discordant selection: the faster it declines, the faster the resolution of intralocus sexual conflict. Here, we use Drosophila melanogaster to quantify the time scale over which a strong, positive rMF impedes a response to sex-discordant selection for a canonical quantitative trait (body size) with an exceptionally long (250 generations) selection experiment for a complex multicellular organism. We found that, compared with rapid and substantial evolution under sex-concordant selection, a high rMF arrested sex-specific adaptation for 100 generations in females and a minimum of 250 generations in males. Our study demonstrates that a high rMF can lead to a protracted period of adaptive stalemate during the evolution of sexual dimorphism.
    [Abstract] [Full Text] [Related] [New Search]