These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Double strand DNA-based determination of menadione using a Fe3O4 nanoparticle decorated reduced graphene oxide modified carbon paste electrode. Author: Ghalehno MH, Mirzaei M, Torkzadeh-Mahani M. Journal: Bioelectrochemistry; 2018 Dec; 124():165-171. PubMed ID: 30064048. Abstract: In this work an electrochemical label free DNA biosensor (ds-DNA) for the determination of menadione (MD) was developed. The biosensor was constructed using a modified nanocomposite consisting of Fe3O4 nanoparticles decorated reduced graphene oxide (Gr) on a carbon paste electrode (CPE). Scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and Fourier transform infrared (FT-IR) spectroscopy confirmed the structure of the synthesized nanocomposites (electrode composition). The Gr-Fe3O4 nanocomposites formed a sensitive layer with large surface area. Electrochemical studies revealed that modification of the electrode surface with ds-DNA and Gr- Fe3O4 nanocomposite significantly increases the oxidation peak currents and reduces the peak potentials of MD. Under the optimum conditions, calibration curve was linear in the range of 0.3-100.0 nM with a detection limit of 0.13 nM. The relative standard deviation for 50.0 nM was 3.90% (n = 5). The proposed biosensor was successfully applied to the determination of MD.[Abstract] [Full Text] [Related] [New Search]