These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Core-shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. Author: Ballestri M, Caruso E, Guerrini A, Ferroni C, Banfi S, Gariboldi M, Monti E, Sotgiu G, Varchi G. Journal: J Photochem Photobiol B; 2018 Sep; 186():169-177. PubMed ID: 30064063. Abstract: Photodynamic therapy (PDT) is an anticancer modality that exploits singlet oxygen and other reactive oxygen species, that are formed by selective irradiation of photosensitive molecules, to kill cancer cells. Most photosensitizers (PS) are hydrophobic and poorly soluble in water and several nanoplatforms have been established to achieve a more efficient delivery. Moreover, the covalent binding of the PS to nanoparticles could in principle reduce unwanted bleaching of the PS, while preserving its photodynamic activity. In this study we report the synthesis of a novel non-symmetrical diaryl-porphyrin suitably modified with a polymerizable pendant, that was used for the preparation of core-shell poly-methyl methacrylate nanoparticles covalently loaded with the diaryl-porphyrin (PMMA@PorVa). Particles, which were prepared with two different porphyrin loadings, are spherical in shape and with a narrow hydrodynamic diameter around 70 nm and a positive zeta potential. Their photo-toxicity was tested against the human colon carcinoma cell line HCT116 and the human ovarian adenocarcinoma cell line SKOV3. PMMA@PorVa were able to inhibit tumor cells proliferation similarly to the free porphyrin, thus confirming that the covalent attachment of the PS to PMMA nanoparticles allows to preserve PS photodynamic activity and in vitro efficacy. Flow cytometric analysis of apoptotic cells demonstrates that, especially in SKOV3 cells, the free diaryl-porphyrin is more effective in inducing apoptosis.[Abstract] [Full Text] [Related] [New Search]