These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mg2-dependent phosphatidate phosphohydrolase of rat lung: development of an assay employing a defined chemical substrate which reflects the phosphohydrolase activity measured using membrane-bound substrate.
    Author: Walton PA, Possmayer F.
    Journal: Anal Biochem; 1985 Dec; 151(2):479-86. PubMed ID: 3006539.
    Abstract:
    An assay of pulmonary phosphatidate phosphohydrolase activity has been developed that employs a chemically defined liposome substrate of equimolar phosphatidate and phosphatidylcholine. Enzyme assays employing this substrate resolved two distinct activities based upon their requirements for Mg2+. Assays were performed in the presence and absence of 2 mM MgCl2 and the Mg2+-dependent phosphatidate phosphohydrolase activity calculated by difference. The Mg2+-independent phosphatase activity resembled that found using aqueous dispersions of phosphatidate (PAaq). Approximately 90% of the Mg2+-dependent phosphatidate phosphohydrolase activity was recovered in the cytosol and the remainder was associated with the microsomal fraction. The Mg2+-dependent phosphatidate phosphohydrolase activity has kinetic parameters of Km = 55 microM, Vmax = 1.6 nmol/min/mg protein for the microsomal fraction, and Km = 215 microM, Vmax = 6.8 nmol/min/mg protein for the cytosolic fraction. These parameters resembled those found using the microsomal membrane-bound (PAmb) substrate. In addition, the pH optima and sensitivity to detergents and thermal inactivation are equal to those for the PAmb-dependent phosphatidate phosphohydrolase activity. In the course of these studies the microsomal and cytosolic activities were qualitatively equal, indicative of a single enzyme in two subcellular locations. In conclusion, the assay of Mg2+-dependent phosphatidate phosphohydrolase activity measured using equimolar phosphatidate and phosphatidylcholine liposomes is equivalent to that activity previously described using microsomal membrane-bound substrate. However, the chemically-defined system provides a more simplified starting point for further studies on this important enzyme.
    [Abstract] [Full Text] [Related] [New Search]