These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support. Author: Yao X, Zhang J, Liang X, Long C. Journal: Chemosphere; 2018 Oct; 208():922-930. PubMed ID: 30068036. Abstract: The degradation of toluene in dielectric barrier discharge (DBD) reactor packed with zeolites or MnOx/zeolites was investigated. The supported catalysts were prepared by loading 3 wt% of manganese on different zeolites (MCM-41, ZSM-5 and 13X) and were characterized in detail using N2 adsorption, XRD, TEM, H2-TPR and XPS analysis technology. Compared to the non-thermal plasma (NTP) alone system, the toluene degradation was improved significantly in NTP-MnOx/zeolites system. The highest toluene conversion of 99.4%, the CO2 selectivity of 73%, the carbon balance of 99.5% can be achieved in DBD reactor packed with MnOx/MCM-41. Both XRD and TEM results confirm that the manganese oxides were dispersed more uniformly on MnOx/MCM-41 than on MnOx/ZSM-5 or MnOx/13X. H2-TPR and XPS results suggest that manganese oxides on MnOx/MCM-41 are MnO2 and Mn2O3, while those on MnOx/ZSM-5 or MnOx/13X are MnO2 and MnO. These results indicate that the structures of zeolites play a significant role in the dispersion and oxidation state of manganese oxides, then affecting the activity of catalyst for toluene removal in plasma-catalysis system.[Abstract] [Full Text] [Related] [New Search]