These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roflumilast enhances cisplatin-sensitivity and reverses cisplatin-resistance of ovarian cancer cells via cAMP/PKA/CREB-FtMt signalling axis. Author: Gong S, Chen Y, Meng F, Zhang Y, Li C, Zhang G, Huan W, Wu F. Journal: Cell Prolif; 2018 Oct; 51(5):e12474. PubMed ID: 30069985. Abstract: OBJECTIVE: We previously demonstrated the roflumilast inhibited cell proliferation and increased cell apoptosis in ovarian cancer. In this study, we aimed to investigate the roles of roflumilast in development of cisplatin (DDP)-sensitive and -resistant ovarian cancer. METHODS: OVCAR3 and SKOV3 were selected and the corresponding DDP-resistant cells were constructed. Cell viability, proliferation, apoptosis, cycle were performed. Expression cAMP, PKA, CREB, phosphorylation of CREB and FtMt were detected. The roles of roflumilast in development of DDP-sensitive and -resistant ovarian cancer were confirmed by xenograft model. RESULTS: Roflumilast + DDP inhibited cell proliferation, and induced cell apoptosis and G0/G1 arrest in OVCAR3 and SKOV3 cells, roflumilast induced expression of FtMt, the activity of cAMP and PKA and phosphorylation of CREB in ovarian cancer cells and the above-effect were inhibited by H89. Downregulation of CREB inhibited the roflumilast-increased DDP sensitivity of ovarian cancer cells, and the roflumilast-induced FtMt expression and phosphorylation of CREB. Also, roflumilast reversed cisplatin-resistance, and induced expression of FtMt and activation of cAMP/PKA/CREB in DDP-resistant ovarian cancer cells. Similarly, treated with H89 or downregulation of CREB inhibited the changes induced by roflumilast. In vivo, roflumilast inhibited the development of SKOV3 or SKOV3-DDP-R xenograft models. CONCLUSIONS: Roflumilast enhanced DDP sensitivity and reversed the DDP resistance of ovarian cancer cells via activation of cAMP/PKA/CREB pathway and upregulation of the downstream FtMt expression, which has great promise in clinical treatment.[Abstract] [Full Text] [Related] [New Search]