These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dihydroindeno[1,2-b]pyrroles: new Al3+ selective off-on chemosensors for bio-imaging in living HepG2 cells. Author: Mal K, Naskar B, Mondal A, Goswami S, Prodhan C, Chaudhuri K, Mukhopadhyay C. Journal: Org Biomol Chem; 2018 Aug 15; 16(32):5920-5931. PubMed ID: 30074036. Abstract: In this study, a new molecular organic probe has been designed and synthesized by using recyclable, inexpensive and non-toxic polyethylene glycol (PEG-400) as a promoting reaction medium in water under environmentally benevolent conditions. The probe has been explored as a potential chemosensor to detect Al3+ ions using a HEPES buffer (pH = 7.4) solution. Investigations of the fluorescence behaviour of this sensor in DMSO/H2O (2 : 8, v/v) solution displayed a dramatic switch-on response only in the presence of Al3+, while other metal ions, like Li+, Na+, K+, Ag+, Ca2+, Mg2+, Mn2+, Ba2+, Cu2+, Ni2+, Co2+, Fe2+, Zn2+, Cd2+, Hg2+, Pb2+, Sr2+, Fe3+ or Cr3+, have almost no influence on the fluorescence behaviour. Various common anions, such as ClO4-, Cl-, or NO3- in the form of Al3+ salts [e.g. Al(ClO4)3, AlCl3 or Al(NO3)3], had no influence on the fluorescence behaviour of the sensors. The detection limit for Al3+ is in the order of 10-6 M in DMSO/H2O (2 : 8, v/v) HEPES buffer (pH = 7.4) solution. Notably, this is the first report of a dihydroindeno[1,2-b]pyrrole moiety acting as a sensor for the selective detection of Al3+ ions through an off-on fluorescence response. The potential of the probe was also confirmed by employing it for fluorescence bio-imaging with Al3+ on HepG2 cells.[Abstract] [Full Text] [Related] [New Search]