These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models.
    Author: Tokutome M, Matoba T, Nakano Y, Okahara A, Fujiwara M, Koga JI, Nakano K, Tsutsui H, Egashira K.
    Journal: Cardiovasc Res; 2019 Feb 01; 115(2):419-431. PubMed ID: 30084995.
    Abstract:
    AIMS: Monocyte-mediated inflammation is a major mechanism underlying myocardial ischaemia-reperfusion (IR) injury and the healing process after acute myocardial infarction (AMI). However, no definitive anti-inflammatory therapies have been developed for clinical use. Pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, has unique anti-inflammatory effects on monocytes/macrophages. Here, we tested the hypothesis that nanoparticle (NP)-mediated targeting of pioglitazone to monocytes/macrophages ameliorates IR injury and cardiac remodelling in preclinical animal models. METHODS AND RESULTS: We formulated poly (lactic acid/glycolic acid) NPs containing pioglitazone (pioglitazone-NPs). In a mouse IR model, these NPs were delivered predominantly to circulating monocytes and macrophages in the IR heart. Intravenous treatment with pioglitazone-NPs at the time of reperfusion attenuated IR injury. This effect was abrogated by pre-treatment with the PPARγ antagonist GW9662. In contrast, treatment with a pioglitazone solution had no therapeutic effects on IR injury. Pioglitazone-NPs inhibited Ly6Chigh inflammatory monocyte recruitment as well as inflammatory gene expression in the IR hearts. In a mouse myocardial infarction model, intravenous treatment with pioglitazone-NPs for three consecutive days, starting 6 h after left anterior descending artery ligation, attenuated cardiac remodelling by reducing macrophage recruitment and polarizing macrophages towards the pro-healing M2 phenotype. Furthermore, pioglitazone-NPs significantly decreased mortality after MI. Finally, in a conscious porcine model of myocardial IR, pioglitazone-NPs induced cardioprotection from reperfused infarction, thus providing pre-clinical proof of concept. CONCLUSION: NP-mediated targeting of pioglitazone to inflammatory monocytes protected the heart from IR injury and cardiac remodelling by antagonizing monocyte/macrophage-mediated acute inflammation and promoting cardiac healing after AMI.
    [Abstract] [Full Text] [Related] [New Search]